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I. Introduction

The usual imodels for distributed databases [RSL,BG] are based on a set

of "entities" distributed among the nodes of

a network. These entities are accessed by users of the database through

"transactions", which are certain sequences of steps ("actions") involving

the individual entities. The steps are grouped into transactions for two

distinct purposes. First, a transaction is used as a unit of recovery:

either all of the steps of a transaction should be carried out, or none

of them should; thus, if a transaction cannot be completed, its initial

steps must be "undone" in some way. Second, a transaction is used to

define atomicity: all of the steps of -. transaction form a logical

atomic unit in the sense that it should appear to users of the database

that all of these steps are carried out consecutively, without any

intervening steps of other transactions. This requirement that transactions

appear to be atomic is called "serializability" in the literature

[EGLT,RSLBG], and has been widely accepted as an important correctness

criterion for distributed databases.

It seems to me that these two purposes should not be served by

the same transaction mechanism. While I think the usual notion of "transaction"

is adequate for purposes of recovery, I think that it is less

appropriate for defining atomicity. Namely, the requirement of

serializability is so strong that it seems to exclude efficient implementation of

many application databases. This paper suggests superimposing a

new mechanism on the transaction mechanism, in order to define atomicity.

The model I use in this paper for a distributed database consists of two completel)

distinct levels - a physical level consisting of node processors connected



by a message system and communicating with users by ports, and a logical

level consisting of a centralized concurrent application database. (The

logical level does not involve nodes, messages, or any other distribution

information.) It is the job of the physical system to "implement", in

some appropriate sense, the application database.

The steps of different application database transactions might be

allowed to interleave in various ways; the set of allowable interleavings

is determined by the application represented. At one extreme, it might be

specified that all allowable interleavings be serializable; this amounts

to requiring that the application database be a centralized

serial database. At the other extreme, the interleavings might be

unconstrained. In a banking database, a transfer transaction might consist

of a withdrawal step followed by a deposit step. In order to obtain fast

performance, the withdrawals and deposits of different transfers might be

allowed to interleave arbitrarily, even though the users of the banking

database are thereby presented with a view of the account balances which

includes the possibility of money being "in transit" from one account to

another. In between the two extremes, there are many other reasonable

possibilities.

In [FGL], we assume an application database allowing any

set of allowable interleavings of transactions. We show how to modify

a distributed system implementing such an application, so that it has an

additional capacity to determine a global database state,

without stopping transactions in progress. Consistency of such a global data-

base state can be checked, and repeated use of this capacity can also

aid in recovery from inconsistent global states. In that work, any set

of allowable interleavings can be assumed; we guarantee that if the
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original distributed system only produces allowable interleavings, then the

modified system will also produce only allowable interleavings. Thus,

a global state can be cbtained for application databases which are

serializable, arbitrarily interleaved, or anything in between these two

extremes.

In this paper, only certain sets of interleavings

are considered. The intention is to consider only sets of

interleavirgs which can be specified in a way which is suitable for use

by a concurrency control algorithm. At the same time, the sets of

interleavings considered should be general enough to allow representation

of the allowable interleavings for important application databases such

as those for banking.

As a first approximation to a specification method, we might associate with each

transaction its "atomicity" (or "granularity" [GLPT]), which is formally described

by a set of "breakpoints" between different sets of consecutive

steps. Steps not separated by a breakpoint would always

be required to occur atomically, (at least from the point of view of the

system users). As a special case of this definition, if there are no

breakpoints for any transaction except at the beginning and end, then

this requirement is simply the usual requirement of serializability. As

another special case, if there are always breakpoints between every pair

of steps of each transaction, then this requirement allows arbitrary

interleaving. In addition, many intermediate cases are possible.

However, this definition does not seem to me to be sufficiently

general to express all commonly-used constraints on interleavings. For

example, consider a banking system with transfer transactions as described
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above. Transfers might be allowed to interleave arbitrarily with each other.

However, we might also want to have another type of transaction, an

"audit transaction" [FGL], which reads all of the account balances and

returns their total. This audit transaction should probably not be

allowed to interrupt a transfer transaction between the withdrawal and

deposit steps, for then the audit would miss counting the money "in transit".

That is, the entire transfer transaction should be atomic with respect to

the entire audit transaction. Thus, the same transfer transaction should

have one set of breakpoints with respect to other transfers, and another

set. with respect to audit transactions.

This example seems to be representative of a fairly general phenomenon:

it might De appropriate for a transaction to have different sets of break-

points with respect to different other transactions. That is, each transaction

might allow different "views" of its activity to different other transactions.

Thus, a natural specification for allowable interleavings might be in terms

of the "relative atomicity" of each transaction with respect to each other

transaction, rather than just in terms of each transaction's (absolute)

"atomicity".

In this paper, a formal definition is given for a type of relative

atomicity, called "multilevel atomicity". The two-level model for distributed

databases is described. A combinatorial lemma is presented, which yields a

necessary and sufficient condition for achieving multilevel atomicity. Some

suggestions are made for using this condition as the basis for a concurrency

control design fof multilevel atomicity.

Other researchers [L,GLPT,G,C] have also noted that the usual notion

of serializability needs to be weakened. In particular, [G] contains
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interesting preliminary work on specification and concurrency control

design, for certain non-serializable interleavings. The multilevel

atomicity of this paper is a generalization of the two-level atomicity

described in [G] under the designation "compatibility sets".

Much work remains to be done, in designing and evaluating concurrency

control algorithms for multilevel atomicity. This paper merely suggests

some preliminary definitions and ways in which they might be used. It

remains to see whether new concurrency control algorithms which achieve multi-

level atomicity can be made to operate much more efficiently than

existing concurrency control algorithms which achieve seriaii-ability.

It also remains to determine whether these weaker notions than

serializability are useful for describing the constraints required

for real-world database applications.
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2. A Model for Asynchronous Parallel Processes

Both the application databases and the physical systems of this paper

can be formalized within the model of [LF] for asynchronous parallel

computation. This unified model allows precise description of distributed

algorithms as processes accessing variables (i.e. either shared variables

or distributed system message ports). In this paper, I will be

informal. Only a brief description of the model is provided; the reader

is referred to [LF] for a complete, rigorous treatment.

The basic entities of the model are processes (nondeterministic

automata) and variables. Processes have states (including start states

and possibly also final states), while variables take on values. An

atomic execution step of a process involves accessing one variable and

possibly changing the process' state or the variable's value or both.

A system of processes is a set of processes, with certain of its variables

designated as internal and others as external. Internal variables are

to be used only by the given system. External variables are assumed to

be accessible to some "environment" (e.g. other processes or users)

which can change the values between steps of the given system.

The execution of a system of processes is described by a set of

execution sequences. Each sequence is a (finite or infinite) list of

steps which the system could perform when interleaved with appropriate

actions by the environment. Each sequence is obtained by interleaving

sequences of steps of the processes of the system. Each process must

have infinitely many steps in the sequence unless that process reaches

a final state.
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For describing the external behavior of a system, certain information

in the execution sequences is irrelevant. The external behavior of a

system of processes is the set of sequences derived from the execution

sequences by "erasing" information about process identity, change of

process state and accesses to internal variables. What remains is just

the history of accesses to external variables.

A distributed problem is any set of sequences of accesses to variables.

A system is said to solve the problem if its external behavior is any

subset of the given problem.

In this paper, the technical assumption that no state

can be both a start state and a final state is required. Also, one

general definition not in [LF] is required. Namely, if S and S' are systems,

then S is a subsystem of S' if the processes, internal variables and

external variables of S are included, respectively, among those of S',

and the internal variables of S are initialized exactly as they are in S'.
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3. Application Databases

My notion of an application database is a centralized, concurrent

system consisting of transactions acting on entities, together with a

set of allowable interleavings of the steps of those transactions. This

is modelled very directly in the model of Section 2: transactions are simply

formalized as processes, while entities are formalized as variables.

More precisely, an application database (S,A) consists of a system S of

processes (called transactions), together with a subset A of the

execution sequences of subsystems of S (called the allowable execution

sequences), such that the following two conditions are satisfied.

(a) All variables of S are internal (i.e. internal to the system).

(;, ev are called entities. This assumption says that the entities

are only accessed via the transactions.)

(b) In every execution sequence e in A, every transaction which appears,

eventually appears in a final state. (Thus, all transactions are

supposed to terminate.)

This definition gives a very general notion of an application database.

The (indivisible) steps of transactions are arbitrary accesses to entities,

not necessarily just reading or writing steps (although these two types

of steps are permissible special cases). Transactions can branch

conditionally: for example, based on the values encountered for certain

entities, they might access different entities at later steps. This

model of a transaction is general enough to include most others in the

literature. It also includes some other notions usually regarded as

somewhat different from ordinary transactions: the "transactions with

revoking actions" in [G] are a particular type of nondeterministic

transaction in the present model.
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4. Coherent Partial Orders

I want to show how to describe certain sets of allowable execution

sequences. In this section, I present some preliminary, rather abstract,

definitions involving sets and partial orders. The definitions of this

section are given at an abstract level since they will be used for a

general combinatorial lemma in Section 7.

I first describe the partitions of an arbitrary set T (to be thought

of as a set of transactions) into levels.

A k-nest, 1 = (fi ..... k) for a set T is a sequence of equivalence

relations on T, satisfying the following conditions:

(a) Tr1 consists of exactly one equivalence class,

(b) rrk consists of singleton equivalence classes, and

(c) Each Tr is a refinement of its predecessor, ri-l"

If t, t' c T, then level11(t,t') is the largest i for which t rr. t'

Next, I describe an abstract "breakpoint" function which defines

a set of breakpoints within a totally ordered set for each of several

"levels", in such a way that the higher level sets of breakpoints always

include the lower level sets. Each totally ordered set should be

thought of as the set of steps of some execution sequence of a particular

transaction.

If X is totally ordered by , k c IN, then a k-level breakpoint function,

b, for (X, ) assigns a set of pairs of -consecutive

elements of X to each 1, 1 ! i < k, in such a way that:
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(a) h(1) contains no pairs,

(b) b(k) contains all pairs, and

(c) b(i) c b(i+l) , for all i.

ITf T is a set, then a k-level interleaving specification, 1., for T has the

following components:

(a) a collection of disjoint totally ordered sets, (Xt, t), one for each

t T, and

(b) a collection of k-level breakpoint functions, b t , one for each

(X t,< t

Next, I define an important condition for a partial order on U X
tET

I want to express the fact that 5 preserves all of the individual 5
- t

orderings and also respects the restrictions expressed by the 
given collection

of breakpoint functions.

Let T be a k-iest for a set including T, I = {((Xt, t),b ):tcT} a

Let 7be ak-net t t

k-level interleaving specification for 
T, - a

partial order on U X t . Then S is coherent (for R and 1)

t(T

provided the following two conditions hold.

(a) The partial order e contains each partial order : .

(b) Assume level (tt') = i. Assume c, ' c Xt and c a'. Assume

. Xt, and a ( . Finally, assume there is no pair (y,y') bt (i)

with A 'X t and t' t '. Then a' .
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Intuitively, this latter condition says the following. If a step,

B, of one transaction follows a step, a, of another transaction, t,

then also follows any other step, a', of t which follows a but precedes any

breakpoints. (Here, "follows" means follows in the partial order '".) The

breakpoints are defined solely by the nesting level i for the two

transactions, t and t'.

I
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5. Multilevel Atomicity

The definitions of this section deal explicitly with a systerj S of transactions.

I use the abstract definitions in the preceding section to help describe

sets of allowable execution sequences. Intuitively, transactions are

grouped in nested classes so that for each t, the set of places

where a transaction t' can interrupt t is determined solely by the smallest

classi containing both t and t'. Moreover, smaller classes determine at

leasE all of the breakpoints determined by containing classes (and

possibly more). This says that transactions which are grouped in a common

small class might have many relative breakpoints (i.e. can interleave a

great deal), while transactions which are only grouped in a common large

class might have fewer relative breakpoints (i.e. cannot interleave very

much).

For each pair of transactions t and t', I must describe the places

at which t is permitted to be interrupted by steps of t'. Since the

transactions need not be straight-line programs, but can branch in

complicated ways, I am forced to describe separately the places at

which each different execution sequence, e, of t can be interrupted

by steps of t'.

A k-level breakpoint specification, B, for a system, S, of transactions

is a family, {bt  : t is a transaction of S, e an execution sequence of t},t,e

where each b is a k-level breakpoint function for the steps of e,t,e

totally ordered according to their occurrence in e. (Formally, the

elements of the ordered set f steps are pairs (i, i), where i is the

ith step of e.)
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A k-nest, R, for the transactions of a system S and a k-level breakpoint

specification, B, for S can be used in a straightforward way to defink an

application database, (S,A(E,B)). Namely, let e be an execution sequence

of a subsystem of S, (i.e. an execution of some of the transactions of S),

and T the set of transactions appearing in e. For

each t c T, let e denote the execution sequence of t occurring as a

subsequence of e, Xt the set of steps of t occurring in et  t the order

in which those steps occur in e, and let b denote b c B. Lett t,et

denote the total order on U X describing the order in which all the
tET t

steps occur in e. Then e is multilevel atomic (for 7 and B) provided

is coherent for H and I = {((Xt,St),bt):t E T). (This definition just

says that all the interruptions occur at the given breakpoints.)

Let A(I,B) denote the set of execution sequences of S which are

multilevel atomic for 11 and B.

For example, if H = (Tri.r 2), and B is the only possible breakpoint

specification (i.e. no pairs for bt,e (1), and all pairs for bt (2)),

then the multilevel atomic execution sequences are just the usual serial ext-cutions.

The reader is referred to [G] for treatment of a special case of our

definition corresponding to T = (Ti,97T 2 , T3 ), where b t,e(2)

consists of all pairs of consecutive steps, for all t and e. That is,

transactions in a common 72 class can interleave arbitrarily, but

transactions not in a common 7 2 class must be serialized with respect

to each other. The "multilevel" definition of this paper also allows

intermediate degrees of interleaving as well as the two extremes

represented in [G].
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6. Simulation of an Application Database

Having described the logical-level centralized and concurrent

application database, I now must dascribe how this database is to be

"implemented" by a distributed system (or anv other system). The physical

system implements the application database by presenting an external

interface to the users which is compatible with allowable executions of

the application database. Correctness for the physical system is thus

defined entirely in terms of its external behavior. The physical system

might produce this behavior by many different methods. For example,

it might centralize, distribute or replicate the entities. It might

implement each transaction on one processor which communicates with other

processors in order to access entities. Alternatively, it might divide

up the entities among the nodes of a network, and allow transactions

to "migrate" from entity to entity as necessary, executing some of

their steps on different processors. It is only the external view which

determines correctness.

A definition for implementation follows. Fix an application database

(S,A). Define a finite nonempty set of variables called ports, each

of which can contain a finite set of transaction status words: a

transaction status word is a pair (t,s) where t is a transaction of S

and s ls either a start state or a final state of t. Let a be a sequence

of access to ports, each access tagged by the label "users" or "system"

(to indicate who is doing the accessing). Then a is syntactically

correct provided, in a, the following conditions hold.
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(a) Each port starts out empty, and each successive access to a

port begins with the same value left at the end of the preceding

access to that port.

(b) The changes of port values are all of the following types. The

users can initiate a transaction t at any time by inserting a pair

(t,s) into a port, where s is a start state of t. The system

can change (t,s) to (t,s'), where s is a start state of t and

s' is a final state of t.

(c) Each transaction is initiated at most once.

(This is a technical convenience, assumed for the sake of

consistency with the formal model of [LF]. If the same transaction

is intended to be run twice, it is simply duplicated.)

(d) Each transaction which is initiated by the users is subsequently

completed by the system.

It remains to express the semantic requirement that a provide the

users with results "consistent with" an allowable execution sequence of

the application database.

Let a be a syntactically correct sequence, e an execution sequence of

a subsystem of S. Then a is consistent with e provided exactly the same

transactions appear in a and e, with the same start states and same

final states. A sequence, a, is correct for the users and system together

provided a is syntactically correct and consistent with some e in A.

I need a definition of correctness for the system alone. Informally,

a system execution sequence is "correct" if whenever it is run

with a "correct user", the result is correct for the users and system
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together. In a little more detail, a sequence of accesses to ports is

correct for the users provided all changes made are among those allowed

for the users in (b) and (c) above. (That is, the users can only initiate

transactions, cannot retract a transaction once it is initiated, and cannot

Initiate the same transaction more than once.) Then a sequence is correct for the

system provided that whenever it is interleaved consistently with a

correct user sequence (and the steps of the resulting sequence labelled

appropriately), the result is correct for the users and system together.

(The interested reader is referred to [LF] for a completely formal

definition for this interleaving.)

A system of processes S' implements application database (S,A) provided

all external behavior sequences of S' are correct for the system.

Thus, I use a weak notion of implementation which simply preserves

input-output results. I do not require preservation of ordering of

transactions; a transaction t is permitted to complete (at a port) before

another transaction t' is initiated (at a port) and yet it might be the case

that some of the steps of t' precede some of the steps of t in all execution

sequences of the application database consistent with the port behavior.

The weakness of the implementation definition allows some freedom in

desi gn of the physical system. In particular, for any execution

sequence e of a system S of transactions, a dependency partial order 5 of the

steps of e is defined as follows. For every pair of steps a, T in e, let

* T if a precedes T in e and either (i) cc and T are steps of the
C

same transaction, or (ii) a and T are steps accessing the same entity.

Then every total order of the steps of e consistent with < is also an
e

execution sequence of S, having the same sequence of values for each

entitv ind the same execution subsequence for each transaction, as v.
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Two execution sequences, e and e' of S are equivalent

if is identical to 5,. It follows that if a sequence, a, of port
e e

accesses is syntactically correct and consistent with an execution sequence, e,

which is equivalent to some e' in A, then a is correct.

Example. If A is the set of "serial" executions of the transaction

system, then "equivalence with some e in A" amounts to the usual

definition for "serializable" executions. If a physical system guarantees

that its port behavior is consistent with a serializable execution sequence,

then it is also consistent with a serial execution sequence.

Example. A popular model for distributed databases is the "migrating

transaction" model described in [RSL]. In this model, entities of the database

reside at nodes of a network of processors, and the transactions migrate

from entity to entity as necessary, executing some of their steps on

different processors. In more detail, a transaction t, with start state s,

originates at a processor o. A message (o,t,s) is sent to the processor

owning the entity which t accesses when it is in state s. A processor

receiving a message (o,t,s) "performs" the indicated step by changing

the value of the entity, updating t's state, and sending a new message

(o,t,s'), where s' is the new state. If s' is not a final state, the

message is sent to the processor owning the appropriate entity. If s'

is a final state, the message is sent back to the originator o. In

this way, an execution sequence e of the system of transactions is

actually "performed" by the processors. (The total order of the sequence

is determined by real clock time.) This execution sequence is constructed

to be consistent with the port behavior of the system. It suffices for
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external port correctness to insure that the execution sequence e

"performed" by the processors is one which is equivalent to some e'

in A.

Now consider the case in which A is a set of multilevel atomic sequences; that

is, assume that R is a k-nest for the transactions of S, = {b te

is a transaction of S, e an execution sequence of t} is a k-level

breakpoint specification for S, and A = A(17,8). We say that an execution

sequence e of S is totally coherent (resp. partially coherent) for E and

B provided the dependency partial order ! is extendable to a total order
e

(resp. partial order) which is coherent for H and I = {((Xt t ),bt:t e T1,

where et = (X t, t) denotes the execution sequence of t occurring as a sub-

sequence of e, and bt denotes b t,et By definition, an execution sequence

e of S is equivalent to one which is multilevel atomic for H and B if and

only if e is totally coherent for T and B. Thus, it suffices to insure

that each sequence of port accesses is consistent with some totally

coherent execution sequence of S. In particular, if the migrating

transaction model is used, it suffices to insure that the execution sequence

"performed" by the processors is totally coherent.

Note that "totally coherent" generalizes "serializable" in the same

sense that "multilevel atomic" generalizes "serial".

It is not immediately obvious how a concurrency control might insure

total coherence. Some help is provided by the lemma in the next section.
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7. A Combinatorial Lemma

In this section, I state and prove a combinatorial lemma which will

be used in the next section to derive a necessary and sufficient condition

for multilevel atomicity. The lemma requires only the abstract definitions

in Section 4.

For this section, let T be a fixed set, let H = (7V ... rk ) be a fixed

k-nest for a set including T, and let 1 = {((X t t),bt):tcT} be a fixed k-level

interleaving specification for T. Let "coherent" mean "coherent for M

and V", and write "level" for "level,,

Lemma. If S is a coherent partial order, then there is a coherent total

order -' which contains .

Proof. Let 5(1 ) denote . A sequence of stages numbered 2,... ,k is carried

out. Each stage, i, inserts additional pairs into the ordering

relation, yielding s(i). Then ' is defined to be (k). It is shown,

inductively on i, I < i s k, that (a) ! (i)s a coherent partial order,

and (b) if a c Xt, C Xt , and level(t,t') < i, then a and 8 are

J'i-comparable. Conditions (a) and (b) are trivially true for i = 1.

Conditions (a) and (b) for i = k clearly imply the needed result.

Stage i (2 < i : k).

Partition X = X into segments, where each segment S is a maximal
tCT t

subset of some Xt with the property that there are no pairs in b t(i-1)

having both components in S. (That is, each X is divided into segnient at
t

the breakpoints given by b (i-l).)
t
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Define a directed graph G whose nodes are all the segments. G

contains an edge from segment SI to segment S2 exactly if there exist

A S, S with ot <(
A' 2

Totally order the strongly connected components of C, S1  S2  .

so that C contains no edges from any segment in Sm to any segment in S

n m. Then define <(i) by adding to < (i-) all pairs (a,$), where

S 1 c S S C and m < n, and then taking the transitive
M I n

c losure.
END

1 now prove the needed properties (a) and (b) for <i, assuming

(i-l)
that they hold for !{

Claim 1. , (i) is a partial order.

Proof of Claim i. There are no edges in < (i) from a t S 1 C to

3 S, ISn where n < m. Also, all edges in <(i) not in <(i-1)

go from "x - S S to -S S , where m < n. Thus, there is no cycle
1 m z n

(in (i-l)

in involving a new edge. Since is a partial order, there

are no cycles in <

Claim 2. -(i) is coherent.

Proof of Claim 2. Assume level(t,t') a j , at' c Xt, and i t rx'. Assume

B & Xt, and a (i B. Assume there is no pair (y,y') c b t(j) with

,a y and y' -- '. I show that ca' ( ( . The result is trivial
t t

if t = t'. so assume that t # t.
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Case 1. a <(i-l)

Then the coherence of - implies the needed result.

Case 2. ot A(i-l)

Then c E S , E S c for some m < n.
1 m 2 n

Since (i) and (i) contains <(i-i) it follows that $ (i-) Qt,

so that cx and are (i-i)-incomparable. Then property (b) applied to

=(i-l) implies that j (= level(t,t')) i - 1. Then b t(i-1) c b t(j) by

the definition of a k-level breakpoint function. But S includes all

elements from a up to the next b t(i-l) breakpoint in Xt; since a and

cx' have no intervening b (j)-breakpoints, they also have no interveningt

b t(i-l)-breakpoints, so that a' c S . The definition of <(i) then

insures the needed result.

In the following, a segment S is said to belong to an element

t T if S c X- t

Claim 3. For each m, the following holds. If S, S' c Sm, S belongs to

t and S' belongs to t', then t iT. t'

Proof of Claim 3. If not, then some S contains a cycle

SoS I ... S = S0  of segments such that for each j, 0 -- j r Z-1,

there exist c c S, 3 5 j+ with a <(i-l) and such that two of the
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segments belong to T.-inequivalent elements of T.1

Let S and S' be two distinct segments in this cycle, belonging to

elements t and t' respectively, where (i) t . ', and (ii) any
I

segment S" following S and preceding S' in the cycle belongs to some

t" which is T.-equivalent to t. Then if a is the last (in the < -ordering)
1 t

element of S and L is the last (in the < ,-ordering) element of S',
t

(i-1)
we claim that a i)3. This is shown by induction on the number of

segments following S and preceding S' in the cycle.

Inductive Step. There exists a' E S such that (' 3(i-l) B', where B'

is the last step of the cycle-successor of S. By inductive hypothesis (or

trivially, if S' itself is S's cycle successor), it follows that

' (i-i) . Thus, a' (il) 6. Now, j = level(t,t') i - 1, by

assumption, so bt(j) bt (i-i). But a precedes the next b t(i-l)

breakpoint following a', so a also

precedes the next b t(j) breakpoint following a'. Coherence of

implies that a <(i-l) .

Applying this result repeatedly around the cycle shows that there

are two distinct segments, S and S', such that a <(i-l) 6 and 6 5 (i-l) a,

where a and 3 are the last steps of S and S' respectively. Eut this

contradicts the assumption that ( is a partial order.

[I
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Claim 4. If a EXt ~EX, and eve(t,t') <1i, thenca and are

(i-comparable.

Proof of Claim 4. By Claim 3, t and t' do not have any segments in the

same strongly connected component Sm. Thus, ot c 1 E S, m E S2 S n

and m n. But then i is defined to contain the pair (a, ) if m < n

and to contain ( ,ct) if n <z m.
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8. A Necessary and Sufficient Condition for Multilevel Atomicity

The lmma of Section 7 is now used to restate the correctness

condition at the end of Section 6. Namely, assume that f and B are

as at the end of Section 6. Then an execution sequence e is equivalent

to one which is multilevel atomic for N and B if and only if e is partially

coherent for 7 and B. Thus, it suffices to insure that each sequence

of port iccesses is consistent with some partially coherent execution

setquence of S. In particular, if the migrating transaction model is

used, it suffices to insure that the execution sequence e "performed" by

the plocessors is partially coherent for TT and B. In other words, e

must have a dependency partial order which is extendable to a partial

order which is coherent for H and I (where I is defined as at the end

of Section 6).
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9. Concurrency Control for Multilevel Atomicity

In this section, I discuss how a concurrency control mechanism

might take advantage of some of the preceding ideas. I want to design

concurrency controls which use the correctness conditions stated in

Section 8. Specifically, I use the migrating transaction model,

and consider how to insure that any execution sequence e "performed" by

the processors has a dependency partial order ! which is extendable
e

to a coherent partial order.

It will be necessary to make an additional assumption about a

breakpoint specification for the application database (S,A). Namely.

in order to be able to determine the locations of breakpoints while the execution

sequence e is being performed, it is necessary to assume a "compatibility"

condition: if two execution sequences of a transaction share a common

prefix e, then either both execution sequences have a breakpoint

immediately after e, or neither does.

In order to insure extendability of < to a coherent partial order,
e

,-onsider the "smallest possible" coherent extension

of . This can be defined as follows. Given a set T, a k-nest

for a set containing T, a k-level interleaving specification

I =((Xt, t ),bt ):t,:T} for T, and a partial order <_ on tU Xt containing

all the -, define the coherent closure of ! (with respect to fl and I)

to be the partial order obtained from 5 by closing under condition (b) of

the coherence definition. Then it is easy to see that < is extendablee
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to a coherent partial order if and only if the coherent closure of

< is a partial order.
e

Assume that the concurrency control generates an execution sequence

e of S, and that the concurrency control includes some priority scheme

and rollback mechanism to insure that no initiated transaction gets

blocked indefinitely. (Such a scheme is not specified here.) I

consider how to insure that the coherent closure of < is a partial order.
e

One possible strategy is cycle-detection, using the coherent closure

of . Namely, if the concurrency control does not otherwise guaranteee

that is extendable to a coherent partial order, the

concurrency control might gerTerate explicitly the edges of the coherent

closure of <, and check for cycles. If a cycle is detected, a priority
C

scheme can be used to determine which steps should be rolled back.

Presumably, fewer cycles would be detected using the multilevel

atomicity definition than if serializability were required,

leading to fewer rollbacks.

Another approach is to attempt to guarantee that the coherent

closure of ' is a partial order. One way of doing this might be to
e

delay some steps, as follows.

Each step S first gets "scheduled", thereby locking its entity and

delaying its transaction. R does not actually get "performed" until it

insures the following. (Note that e refers to the order in which steps

actually get performed, not the order in which thev are scheduled.) If

e is the initial segment of e ending with step R, and if ct is the
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last step of transaction t which precedes 1 in the coherent closure of

then a breakpoint for B's transaction immediately follows (Z ine

the execution sequence prefix of t occurring as a subsequence of e1 .

(This can be accomplished by making 1 wait until suitable breakpoints

have been reached, assuming that the concurrency control uses a priority-

rollback mechanism for preventing blocking.)

If the property above is guaranteed, for each a, then the coherent

closure of < is consistent with the total ordering of steps in e, so it
e

must be a partial order.

Of course, there are still many difficulties involved in designing

a priority-rollback scheme to guarantee that no transactions block.

Another, related difficulty in the design of a mechanism for allowing

transactions to commit: even though the concurrency control guarantees

eventual performance of all of the steps of a correct execution sequence

e, it does not necessarily follow that the concurrency control can determine

a particular point in time when each transaction can no longer have any

of its steps rolled back! This is apparently a greater difficulty for

multilevel atomicity than it is for ordinary atomicity, since multilevel.

atomicity allows (even if there are only a finite number of entities) an

infinite chain of transactions tl,t2,t3,.. such that for each i there

are steps ni of ti and 13 of t+ 1 with 1 < a. This means that it is

quite plausible that a rollback of steps of t i+ can cause a rollback of

steps of ti, and so on.

" lll .. .. i i . ... .. . .. .... .J
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10. Further Research

Here, I have really only suggested a new, general correctness

criterion. It remains to 'esign detailed concurrency controls based on

this criterion, in ord determine if the generalization can be

exploited for increased efficiency.
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